Objective symptom measurement for
    Patients with Parkinson’s

ConnectedLife and National Neuroscience Institute Singapore collaborate in an observational, non-interventional study to determine the validity of a IMU sensor-based approach to objectively assess motor fluctuations and motor/non-motor symptoms in Patients with Parkinson’s Disease (PwP)



Parkinson’s Disease (PD) is characterized by a loss of spontaneous movement that is dramatically alleviated by dopamine restitution. The dopamine precursor levodopa – after 50 years of use – is still considered to be the dopaminergic compound with strongest therapeutic potency as well as superior safety. However, the long-term treatment frequently leads to symptom fluctuations, which are inadequately addressed by impersonalized and rigid timing schedules for drug administration.

Managing motor fluctuations successfully is one of the greatest challenges of modern PD therapy. Recently, the description of motor symptoms in patients with PD has been disrupted by the introduction of body-worn sensors, which describe the PD motor syndrome with objective parameters for the first time. This surge of new low cost hardware devices can reliably detect bradykinesia, tremor, postural disturbance and freezing of gait promising continuous home-based monitoring of PD symptoms1-5. Modern technology has enabled patients to carry sensors over longer periods of time and in remote environments, allowing a multitude of motor parameters to be described in the absence of placebo effects and rater bias.


PD’s transformation and intensive levodopa therapy

The advent of objective and seamless measurement of parkinsonism will help close the feed-back loop between clinical assessment and pharmacological treatment. Furthermore, with the help of data science, biomedical algorithms could even be predictive by recognizing patterns that evade the clinical assessment of doctors. We believe that pharmacotherapy with dopaminergic for patients with Parkinson’s disease is just short of undergoing a similar transformation like insulin treatment did in previous decades and would like to answer the question; Is it time for “intensive levodopa therapy” now?

In the study with NNI, we developed and refined an objective measure for motor fluctuations in PD patients and target objective measurement of specific PD symptoms. The patients are rated by their doctors using clinical rating scales (UPDRS, MOCA etc.) and we use a single wrist-worn device to collect supervised and free-living motion data. Furthermore, we test user experience and gather feedback from patients to develop methods and applications for automated motor state monitoring.

With a sample of 100 patients, we will acquire 3000 minutes of labeled motion data (via retrospective video assessment) and more than 10x of unlabeled free-living motion data. The raw data is then processed and used to develop a predictive classification model of PD motor state and detect specific PD motor symptoms. We have performed previous studies in the field of motion sensing in Parkinson’s Disease which has been achieved in a test-based as well as free-living setup and serves as profound scientific basis for this research study.


Leveraging technology for timely and effective intervention

What we are trying to achieve is >90% accuracy for the scoring from the device compared to an expert rater using pre-trained models, algorithms to help administer medication levels, pumps & determine suitability for Deep Brain Stimulation (DBS) surgery. Labelling by human experts (UPDRS scoring) only give you 78% accuracy as a result of small sample and can be extremely time consuming. PwP patients’ self-labelling will improve model accuracy to 85%. Data captured by sensors (large scale and unlabelled data), building algorithms and machine learning from the experts’ observations & PwP patients’ own labelling will improve model accuracy further and above the 90% acceptable requirement. Wearing the wrist-watch for 10-12 hours a day (daylight and awake hours) allows for live-monitoring of the PwP & real-time collection and analysis of data and objective scoring. This can help us identify or predict an episode occurring based on the trained models. An example of this would be Freezing of Gait or Rigidity which are major concerns. With an alert sent to the patient (alarm, vibration or sound to snap the PwP out of the freezing situation) and notification to the caregiver, we aim to prevent falls and further injury to the PwP. An App to support day to day living for the PwP with reminders for medication and exercise, rest indication and inputs for self-labelling can provide further insights to the PwP’s day.




1. Smith SL, Lones MA, Bedder M, Alty JE, Cosgrove J, Maguire RJ, et al. Computational approaches for understanding the diagnosis and treatment of Parkinson’s disease. IET Syst Biol. 2015 Dec;9(6):226–33.
2. Kassavetis P, Saifee TA, Roussos G, Drougkas L, Kojovic M, Rothwell JC, et al. Developing a Tool for Remote Digital Assessment of Parkinson’s Disease. Mov Disord Clin Pract. 2016 Jan;3(1):59–64.
3. Lockhart TE, Soangra R, Chung C, Frames C, Fino P, Zhang J. Development of automated gait assessment algorithm using three inertial sensors and its reliability. Biomed Sci Instrum. 2014;50:297– 306.
4. Horak FB, Mancini M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov Disord Off J Mov Disord Soc. 2013 Sep 15;28(11):1544–51.
5. Yang K, Xiong W-X, Liu F-T, Sun Y-M, Luo S, Ding Z-T, et al. Objective and quantitative assessment of motor function in Parkinson’s disease-from the perspective of practical applications. Ann Transl Med. 2016 Mar;4(5):90.

Recent Posts

Data Protection Trustmark

ConnectedLife obtains Data Protection Trustmark (DPTM) certification by IMDA for it’s commitment and capability towards data protection...

Remote INR Monitoring for Patients with Heart Conditions

ConnectedLife and Roche collaborate to further empower patients with chronic heart conditions to self-monitor via...

Objective Symptom Measurement for Patients with Parkinson’s

ConnectedLife and National Neuroscience Institute Singapore collaborate in an observational, non-interventional...

Hey there, I’m a cool multi-purpose modal.
Use me for almost anything!

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries.